Search results for "System bus"
showing 3 items of 3 documents
Hypervisor-based Protection of Code
2019
The code of a compiled program is susceptible to reverse-engineering attacks on the algorithms and the business logic that are contained within the code. The main existing countermeasure to reverse-engineering is obfuscation. Generally, obfuscation methods suffer from two main deficiencies: 1) the obfuscated code is less efficient than the original and 2) with sufficient effort, the original code may be reconstructed. We propose a method that is based on cryptography and virtualization. The most valuable functions are encrypted and remain inaccessible even during their execution, thus preventing their reconstruction. A specially crafted hypervisor is responsible for decryption, execution, a…
Step-by-Step Control of the Dynamics of a Superconducting QED-like System
2007
We discuss the modus operandi of a theoretical scalable coupling scheme to control step by step the time evolution of a pair of flux qubits embedded in a lossy resonant cavity. The sequential interaction of each qubit with the quantized cavity mode is controlled by externally applied magnetic fluxes. Our analysis indicates that indirect qubit-qubit interactions, with the electromagnetic mode acting as a data bus, can be selectively performed and exploited both for the implementation of entangling gates and for the generation of states with a priori known characteristics.
Routing quantum information in spin chains
2013
Two different models for performing efficiently routing of a quantum state are presented. Both cases involve an XX spin chain working as data bus and additional spins that play the role of sender and receivers, one of which is selected to be the target of the quantum state transmission protocol via a coherent quantum coupling mechanism making use of local/global magnetic fields. Quantum routing is achieved, in the first of the models considered, by weakly coupling the sender and the receiver to the data bus. In the second model, strong magnetic fields acting on additional spins located between the sender/receiver and the data bus allow us to perform high fidelity routing.